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roughness was presented. The results confirm that the approach is

applicable as long as the conditions for the skin depth are fulfilled.

The introduction of discretization cells with a surface resistance

reduces the total number of required cells by use of a frequency

independent coarse grid. The method has the advantage of giving only

a small decrease of convergence stability compared to the lossless

calculation.

Theproposed method is well suited for CAD.
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TM-Scattering from a Slit in a

Thick Conducting Screen: Revisited

Soo H. Kang, Hyo J. Eom, and Tah J. Park
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Abstract—TM plane-wave scattering from a slit in a thick conducting
ecreen is reexamined. A Fourier transform technique is employed to
express the scattered field in the spectral domain, and the boundary con-
ditions are enforced to obtrdn simultaneous equations for the transmitted
field inside the tkick conducting screen. The simultaneous equations are

solved to represent the transmitted and scattered fields in series forms.
Approximate series solutions for scattering and transmission are obtained
in closed-forms which are vatid for high-frequency scattering regime.

Fig. 5. Configuration (a), and magnitude of the transmission coefficient S1 ~
(b), for a microstrip parallel resonator (one wavelength long at resonance),
showing the irdluence of copper metallization and conductor roughness.
w = IsOPm,ls = 150pm, t = 30pm, s = 75pm, ~ = 58. 106[flm]-1

and:, = 12.9. . copper oeff = 0.25 #m. _ ideal conductor.

compared to a real copper conductor with a finite surface roughness.

The resonator quality factor is lowered as expected by the conductor

losses.
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V. CONCLUSIONS

An extension of the finite difference method in frequency domain

for accurate and effective treatment of conductor losses and surface
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I. INTRODUCTION

Electromagnetic scattering from a slit in a thick conducting screen

has been extensively studied [1]–[6]; however, the exact solution is

not available in a closed form, thus rendering to various approx-

imations and numerical approaches to understand the behavior of

scattering from and transmission through the slit.

In this paper, using the technique of Fourier transform and mode-

matching given in [5], we obtain a solution for uniform plane wave

scattering from a slit in the thick perfectly conducting screen. The

solution presented in this paper is not only computationally efficient

but also it reduces to a simple closed form under certain conditions.

The organization of the paper is as follows: In the next section, we

show the expressions for the TM (transverse magnetic to slit axis)

scattered wave which is represented in the spectral domain by using

the boundary conditions. In Section III, we perform the numerical

calculations for the transmitted field and the transmission coefficient

to compare them with other existing solutions. A brief summary is

given in the Conclusion.

II. FfELD REPRESENTATIONSAND MATCHING BOUNDARY CONDITIONS

A. Field Representations

In region (I) (air, z > O), an incident field E; impinges on a

slit (width: 2a, depth: d) in a thick perfectly conducting screen (See

Fig. 1). Region (II) (–d < z < 0, –a < z < a) denotes the slit

filled with a lossy material. Region (III) denotes the lossless half-

space (z < – d). The wave number of regions (I), (II), and (III) are

lco, kl, and kz, respectively. Note kO = w-, h = w@,

andka = w ~. Here, exp ( –jwt) time-harmonic variation is

suppressed throughout.

Then in region (I), the total electric field consists of the incident,

the reflected, and the scattered fields which are respectively written as

E;(z, z) =ejkz’-Jk=z

Ej(z, z) = – ejk”’+jk=’

where

k= = ko sin 9

k, = ko COS @

Note that fi~ (~) and E; (z, 0) are the Fourier transform pair.

Since H= (z, z) = –l/(jwpo)~EV (z, z)/tlz, the corresponding x

components of the incident, the reflected, and the scattered H-fields

are

In region (II), the total field in between the screen may be

represented as

.
-E;(x, z) = ~ (b~ COS &Z

?n=l

+ cm sin &mz) sinam(z + a)

1z

~ Incident Field ~ Scyd Field
\

Region(I): Air, ko

x
///////////////

\

b
Region(llI) ,kz

et ‘2

~Transmitted Field

Fig. 1. Geometry of scattering from a thick perfectly conducting screen.

where

am = m7r/(2a)

(m = ~1+ – a%

The corresponding x component of H-field is

In region (III), the total transmitted field may be written as

where

k; = ~k; – (2

/
q(() = m E;(z, –d)eJ<’ dx

—cc

The corresponding z component of H-field is

B. Matching Boundary Conditions

(2.1)

a)

To determine unknown coefficients b~ and cm, it is necessary

to match the boundary conditions of tangential E- and H-field

continuities. First, the tangential E-field continuity along the z-axis

(–cm < z < coz = O) yields

E~(z, O) =13~(z.0) Ixl < a

=0 Izl>a

Taking the Fourier transform on the both sides of above equation,

we get

Substituting (2. 1) into (2.2), and performing integration with re-

spect to x, we obtain
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Second, the tangential H-field continuity along –a < x < a, z = O,

gives

H:(3, o) + H;(X, o) + H:(Z, o) = H:(z, o)

(2.4)

Substituting (2.3) into (2.4), we obtain

=~-*sins.(.+a)

m=l F1

Multiplying the above equation by sin.. (z + a) andintegrating the

both sides with respect to z from –a to a, we obtain

(2.5)

where

Using the residue crdculus, we may evaluate I(ko ) as [7]

2fraqm ~
I(ko) .--&- . . - [1,(/$()) + I,(h)] (2.6)

m

where &n is the Kronecker delta, and Vm = ~-. The first

term containing fi~m is aresidue contribution at ~ = +a~ whereas

Il(ko) and12(kO)arise from the integration along the branch cut

associated with < = ko.

Jm –4j(–l)ne23k0”e–2 k0aU~dv (2.7)11 (k(j) =
–o k;[(l +jv)’ – CY2][(1 +.iu)2 – 821

_ ze2~koa(_l)~ m

~S,{[.4(tJ - A(~2)l/cx
– – k;(czz – p) ,=1

- [A(ts) - A(tJ]/~} (2.8)

a = am/kO,~ = an/kO

A(t) = (–l)lrtt-0’5epteTf c(@) + 21-’&p0’5-’

1–1

. Z(21 -271- 3)!!(-2pt)r
,53

p = 2koa

tl = (cl – l)j, t2 = (–a – l)j

t3 = (p – l)j, t4 = (–B – l)j

er~c(. . .) complementary error function

The expression 11 (ko ) in (2.8) is an asymptotic series form

of which lth term has an order 0[1/(kOa)i–05]. Note that this

asymptotic series expression converges for I2k0 a/(rnx) I > 1.

Hence, it is computationally more efficient to use (2.7) than (2.8)

in evaluating 11 (ko ),

In order to determine the coefficients bm and cm, we use another

bounday condition at z = –d. The tangentird

along z = –d, gives

E;(z, –d) =E; (x, -d) 1x1 <

=0 Izl>a

E-field continuity

a

Taking the Fourier transform on the both sides of above equation,

we get

The tangential H-field continuity along –a < x < a, z = –d,

gives

(2.10)

Substituting (2.9) into (2. 10), and rearranging the expression, we

obtain

~fi(b. sin6. d + c. cos& d)&a

= ~ E am(bm cos~m d - cm sinf~ d)I(kz) (2.11)
fn=l

where

(2.12)

where 6~m is the Kronecker delta, and Xm = ~w. Substitut-

ing (2.6) into (2.5) and (2. 12) into (2. 11), we obtain the simultaneous

equation for cm and bm which may be rewritten as the following

matrix form:

where B and C are column vectors consisting of elements bm and

cm, respectively, and W1, Wz, !3!3, I!4, and 17 are matrices whose

elements are such as

.<.
42,.?7? = – --/m.
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(7J13,nm =a ~
‘&

)

cos[n d + - sin& d &m
.7pl

– * Cos ((m d)[Il(k2) + IZ(kz)]

=7J$)L + of)

(

$4,nm =a –~
‘h

)

sin & d -I- - cos (m d tinm
pz .’fpl

+ ~ sin (cm d)[Il(kz) + Iz(kz)]

= +y)c$mn +@)

~n =
W%% [-(-1 )”’J”” + ,#ma]

Solving the above matrix for B and C, we have

B =(w1 – v2VIl~3)-lr

c = – V~’W3(V1 – v2w;lv3)-lr

We consider the following two special cases:

i) When d = O and ko = kz, then

B = ~W~lr

c=$~~lr

(2.13)

Furthermore if koa <<1, then bl = –jl.3k,a, c1 s –0.8k,a, and

bn Rcn%o(n #l)

ii) When ko a >> 1,then

(2.14)

III. SCATTEREDAND TRANSMITTED FmLD COMPUTATION

Substituting bm and cm given in the previous section into fi~ (<)

and E;(<), we obtain the scattered and transmitted fields, 13~(~, z)

and E; (~, z ). In order to check the validky of our formulation,

we compared IE; (z, O) I and 13$(z, –d) I of our computation with

the magnetic currents given in Fig. 4(a) and (b) of [6], confirming

perfect agreements between two results; hence, we do not show the

comparison here.

The far-zone scattered and transmitted fields at distance ~1 and r2

shown in Fig. 1 can be evaluated by utilizing the stationary phase

approximation such as

E~(9t,0) =e
F

3(k2.2–(7r/4)) k2 C05 et

2irr2

$jb ~ cos (&m d) — cm sin (&m d)]a~

where

0. = sin–l (z/rl), rl = 4-

0, = sin-’ (z/rz), .2 = ~x’ + (z + d)z

In Fig. 2, we depict the angular behavior of the far-zone transmitted

field, where (2, 13; exact) and (2. 14; approximate) are, respectively,

14, 1

01
0 102030405060 7080 )

Transmitted Angle 9, (degrees)

Fig. 2. Angular behavior of far-zone transmitted field.

used for bn calculations. Fig. 2 shows that both exact and approximate

solutions agree well with the Keller’s high-frequency results [8] when

Ot < 60°.

The transmission coefficient, t, may be defined as a ratio of the

time-averaged power transmitted through the slit to the time-averaged

power incident on the slit, and the reflection coefficient, T, as a ratio

of the scattered to the incident power. They are shown to be as

(3.15)

where symbol Ire{. ..} denotes taking an imagintuy part of {. . .} and

symbol (. ..)* denotes a complex conjugate of (. ..)

i) When d = O and ko = kz, t and r simplify to

{m}~Im ~ bm~~
‘=r=–4ako

m=l

ii) When k. a >> 1,and k. = kl = kz, we obtain approximate t
and r in closed forms by substituting (2.14) into (3.15).

t=w&~y
mm

where 1< m < 2kOa/n: (3.16)

It is interesting to note that the approximate t and r &e independent

of d. Using (3.15), we evaluate t versus 6’ for koa = 5 and

d/a = 0,0.8,1.6 when kO = kl = k2 in Table I. We observe that our

computations agree well with the results in [3] when d/a = 0,0.8,

but an appreciable difference exists between ours and [3] when

d/a = 1.6.

The approximate t (3.16) is tabulated against the exact t (3.15) in

Table II when koa = 15 and d/a = 0,0.8,1.6. Table II shows that

approximate solution agrees well with the exact one except for near

grazing angles (0 ~ 70° ).
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TABLE I
ANGWARBEHAVIOROFTRANSMISSIONCOEFFICINFORkOa = 5

k~a = 5

d/a = O d/a = 0.8 d/a = 1.6
e Hongo[3] (3.15) Hongo[3] (3.15) Hongo[3] (3.15)
0° 1.0502 1.0410 1.0287 1.0280 1.0673 1.0547

10” 0.9678 0.9694 0.9600 0.9593 0.9951 0.9707
20” 0.8945 0.8885 0.8774 0.8767 0.9059 0.8768
30” 0.8991 0.8919 0.8654 0.8649 0.8806 0.8901
40° 0.8398 0.8328 0.7895 0.7902 0.7810 0.8469

50” 0.6271 0.6228 0.5776 0.5795 0.5509 0.6399

60° 0.3589 0.3572, 0.3248 0.3267 0.2981 0.3677

70° 0.1502 0.1499 0.1340 0.1351 0.1188 0.1538

80° 0.0350 0.0350 0.0309 0.0312 0.0267 0.0357

TABLE II
ANGULARBEHAVIOROFTRANSMISSIONCOIXFr~IRNTFORkOa= 15

I kna = 15 I

30” 0.8488 0.8399 0.8409 0.8475
40° 0.7692 0.7667 0.7694 0.7693
50° 0.6112 0.6014 0.6020 0.6139, ,
60° 0.5226 0.5055 0.5116 0.5021

70° 0.2764 0.2263 0.2312 0.2187
80° 0.0632 0.0434 0.0445 0.0415

IV. CONCLUSION

The behavior of TM-wave scattering from a slit in a thick con-

ducting screen is reexamined. A Fourier transform approach is

used to obtain the scattered and transmitted fields in series forms.

Approximate solutions for scattering and transmission is presented in

closed forms which are valid for high-frequency scattering.
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