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Fig. 4. Total attenuation of a shielded 75 £} microstrip line versus fre-
quency with surface roughness parameter of ooz at the interfaces be-
tween conductor and substrate. Dimensions of substrate and microstrip:
w=130pm,h = 200 pm,t = 35 ym,x = 58 - 106[Qm]_1, and &, = 5.
Metallic shielding: 1235 x 1640 pm?.
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Fig. 5. Configuration (a), and magnitude of the transmission coefficient Sy
(b), for a microstrip parallel resonator (one wavelength long at resonance),
showing the influence of copper metallization and conductor roughness.
w = 150 pm,k = 150 gm, ¢t = 30 pm,s = 75 um, x = 58 - 108[Qm] 1
and e, =129, -+ enennn copper oo = 0.25 pm. ____ ideal conductor.

compared to a real copper conductor with a finite surface roughness.
The resonator quality factor is lowered as expected by the conductor
losses.

V. CONCLUSIONS

An extension of the finite difference method in frequency domain
for accurate and effective treatment of conductor losses and surface

roughness was presented. The results confirm that the approach is
applicable as long as the conditions for the skin depth are fulfilled.
The introduction of discretization cells with a surface resistance
reduces the total number of required cells by use of a frequency
independent coarse grid. The method has the advantage of giving only
a small decrease of convergence stability compared to the lossless
calculation. '
The proposed method is well suited for CAD.
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TM-Scattering from a Slit in a
Thick Conducting Screen: Revisited

Soo H. Kang, Hyo J. Eom, and Tah J. Park

Abstract—TM plane-wave scattering from a slit in a thick conducting
screen is reexamined. A Fourier transform technique is employed to
express the scattered field in the spectral domain, and the boundary con-
ditions are enforced to obtain simultaneous equations for the transmitted
field inside the thick conducting screen., The simultaneous-equations are
solved to represent the transmitted and scattered fields in series forms.
Approximate series solutions for scattering and transmission are obtained
in closed-forms which are valid for high-frequency scattering regime.
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I. INTRODUCTION

Electromagnetic scattering from a slit in a thick conducting screen
has been extensively studied {1]-[6]; however, the exact solution is
not available in a closed form, thus rendering to various approx-
imations and numerical approaches to understand the behavior of
scattering from and transmission through the slit.

In this paper, using the technique of Fourier transform and mode-
matching given in [5], we obtain a solution for uniform plane wave
scattering from a slit in the thick perfectly conducting screen. The
solution presented in this paper is not only computationally efficient
but also it reduces to a simple closed form under certain conditions.

The organization of the paper is as follows: In the next section, we
show the expressions for the TM (transverse magnetic to slit axis)
scattered wave which is represented in the spectral domain by using
the boundary conditions. In Section III, we perform the numerical
calculations for the transmitted field and the transmission coefficient
to compare them with other existing solutions. A brief summary is
given in the Conclusion.

II. FIELD REPRESENTATIONS AND MATCHING BOUNDARY CONDITIONS

A. Field Representations

In region (I) (air, » > 0), an incident field E, impinges on a
slit (width: 2a, depth: d) in a thick perfectly conducting screen (See
Fig. 1). Region (Il) (—d < z < 0,—a < z < a) denotes the slit
filled with a lossy material. Region (III) denotes the lossless half-
space (z < —d). The wave number of regions (I), (II), and (III) are
ko, k1, and k2, respectively. Note ko = w./lio€o, k1 = w./p1€1,
and k2 = w./p2€z. Here, exp (—jwt) time-harmonic variation is
suppressed throughout.

Then in region (I), the total electric field consists of the incident,
the reflected, and the scaitered fields which are respectively written as

Ey(z,z) = gkezmakaz

E;(a},z) - _ eszz+Jk;z
By(e.2) =1/(2m) [ B0 ac

where
k. =kosiné
k., = ko cos@

K=k -
B2(0) = / E:(x,0)e’** da

Note that E;(C ) and E;(x,0) are the Fourier transform pair.
Since H,(z,2) = —1/(jwpo)0Ey(=, z)/0z, the corresponding =
components of the incident, the reflected, and the scattered H-fields
are
H(x.z2) = ie]k”_’k‘z
Wio

H(z,2) = _wk;o gIkmutohsz

s _ -1 o k(’) s —jCa:-l—]kéz
Hiw0) = = [~ B0 a

In region (II), the total field in between the screen may be
represented as

EZ(.?:, z) = Z (bm €08 Emz

m=1

+ em Sin&m z) sinam(z + a)
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Fig. 1. Geometry of scattering from a thick perfectly conducting screen.

2.1)

where

am =mn/(2a)

The corresponding = component of H-field is

L S e

jwﬂl m=1

Hl(z,2) =

(=bmsinépmz + ¢ cosEpmz) sinam(z + a)

In region (III), the total transmitted field may be written as

By =5 [ By(Qe T ag

K=k - ¢

EL Q) = /w E}(z,—d)e’*" dx

—0

where

The corresponding & component of H-field is

H:,(J), z) = _L e %E;(C)e—,}(x—]ké(qud) d(

w2

B. Matching Boundary Conditions

To determine unknown coefficients b, and c,,, it is necessary
to match the boundary conditions of tangential F- and H-field
continuities. First, the tangential F-field continuity along the z-axis
(o0 < z < 0,z = 0) yields

Ey(2,0) =EJ(2.0) |z|<a
=0 Jz|>a

Taking the Fourier transform on the both sides of above equation,
we get

E;(¢) = /m ES(z,0)e’”

dz = / E3 (2,007 da 2.2

Substituting (2.1) into (2.2), and performing integration with re-
spect to x, we obtain

Ey Q) = Z:l bmzzgﬁ_-"—‘a—%j (=)™ — e (23)
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Second, the tangential H-field continuity along —a < z < a, z = 0,
gives

H:(x,0) + H.(z,0) + H:(z,0) = HZ(z,0)

2.7kz jke bt Jk(’) s —JjCx

o e  27he E (e d¢
cmﬁm

—Z

=1

sinam(z + a)
.4)
Substituting (2.3) into (2.4), we obtain

2]"7; gk .7 —

eIke® _

5 oo (_l)mc]Ca - e—-J(a

mﬁm

kbe 7% d¢

—Z

Multiplying the above equation by sin a,, (z + a) and integrating the
both sides with respect to z from —a to a, we obtain

sin an, (z + a)

—2 kza__n n x —jkza
(;2~k2)[ ( 1) eJk +e gk ]
=i Z bt I(hy) — 22822
.5)
where
I(ko) = / I (G D | (G VL YR
—c0 (€% — aZ.)(¢* — a})
Using the residue calculus, we may evaluate I(ko) as [7]
2 m s
I(ko) = T3 6pn = [I1(ko) + o (ko)) @.6)

where 8., is the Kronecker delta, and 7., = 1/k2 — a2,. The first
term containing 6, is a residue contribution at { = +a,, whereas
I, (ko) and I(ko) arise from the integration along the branch cut
associated with { = kq.

_ [ (et TR )
Ii(ko) = /_0 k2[(1 +jv)2 —o?[(1+ jv)2 - 57 d 2.7
262;k0a( 1)
= F(_T—_) Z Si{[A(t1) — A(t2)]/
- [4(t) - AC))/8) @8

—4j _
kg (a? — §2)
a=am/ko,B = an/ko

A(t) = (—1)l7rt1_0‘5epterfc(\/p_t) + 214\/771)0.5—1

1—1
Y (21— 2r = 3)!(~2pt)"
r=0

pP= Zkoa
t1=(a—1)jta = (-a—1)j
ts=(B—1)j,ta= (-8 -1)j
erfc(---) complementary error function
The expression I;(ko) in (2.8) is an asymptotic series form

of which Ith term has an order O[1/(koa)'~°-°]. Note that this
asymptotic series expression converges for |2kea/(mw)| > 1.

Vl—Ot2 |
sin

e

Iy (ko) =

+ vV 1[3_ ﬂ2 Sin—l ﬁ]

Hence, it is computationally more efficient to use (2.7) than (2.8)
in evaluating I (ko).

In order to determine the coefficients b,, and c,,, we use another
boundary condition at z = —d. The tangential E-field continuity
along z = —d, gives

Eg(a:, ~d) =E;(:c, -d) |zl <a
=0 [z|>a

Taking the Fourier transform on the both sides of above equation,
we get

El ()= Z (bm cOSEm d — Cm Sin & d)
m=]
e e (=)™ - e 2.9)

The tangential H-field continuity along —a < z < a,2 = —d,
gives

oo
u—? Z (b sin &y, d + cm 08 &n d)ém sinam (z + a)

m=1

o0 k, - it
=/ o2 BL(Q)e ™" d

-0

2.10)

Substituting (2.9) into (2.10), and rearranging the expression, we
obtain

j%(bn sin &, d + ¢, cos &y d)€na
1

= %:; > am(bm cosém d = cm sin &m d)I (k) (2.11)
m=1

where
00 -1 m_ jfa __ ,—jCa -1 n_—jla _ ,3€a kl
)= [ e«
= 2 — [Ey (ke + To(ka)] @.12)

m

where 6., is the Kronecker delta, and xm = 1/k2 — a2,. Substitut-
ing (2.6) into (2.5) and (2.12) into (2.11), we obtain the simultaneous
equation for c,, and b,, which may be rewritten as the following

matrix form:
¥, ¥ ||B| _|{T
¥y Uy ||CIT |0

where B and C are column vectors consisting of elements b,, and
Cm, respectively, and ¥y, Wy, ¥3, ¥y, and I' are matrices whose
elements are such as

¢1,nm = A Omn —
Ho

= {76 + 9
1[)2 nm = — ‘af_n‘smn
M1

=9 6mn

JOn 3
Smte am[I1 (ko) + I2(ko)]
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Y3.nm _a<ﬁ cos&, d+ ,—é;:—singn d)&nm
1

M2

— Snlm o5 (€ )[T1 (ka) + Ia(k2)]
27ru
E¢§0)5nm wél)
P4, nm =a,(—X—" siné, d + -gl c0s € d) brm
M2 JH1
+ ‘;';TZ'” sin (€m d)[T1(k2) + T (k2)]
E’f’gmémn ¢§1)
2jk;an n_Jjkza —ikgza
—_—— - _1 JEz pET
T et — Ry DT e

Solving the above matrix for B and C, we have
B =(¥; — U, 0" ¥;)7'T

C=—97 ' 03(8, — ¥, ;)7 'T (2.13)

We consider the following two special cases:
i) When d = 0 and ko = k2, then
B= %\11;11‘
C= %\1/;11“

Furthermore if koa < 1, then by = —j1.3k.a,c1 = —0.8k.a, and
by ®cp, = 0n #1)
ii) When kga > 1, then

(0) Y
wéo)d}(o) wgo)wio)
(0),7
i 2.149)
¢(0)¢(0) wgo)wio)

II. SCATTERED AND TRANSMITTED FIELD COMPUTATION

Substituting b,, and c¢,, given in the previous section into E;(C )
and E} y({), we obtain the scattered and transmitted fields, E;(z, z)
and E ,(2,2z). In order to check the validity of our formulatlon
we compared |Ed(x,0)| and EZ(z,—d)| of our computation with
the magnetic currents given in Fig. 4(a) and (b) of [6], confirming
perfect agreements between two results; hence, we do not show the
comparison here.

The far-zone scattered and transmitted fields at distance r1 and r2
shown in Fig. 1 can be evaluated by utilizing the stationary phase
approximation such as

E:(6,,6) — ¢/tkor1—(w/4)) /2:;_” cosf,

i (i——.jkc,asmes (_1)771
. E b Gm
m=1

e]kga sin 8

(kosin,)? — a2,

koro—(= k2
E;(Qt,H) =61( 27z —( /4)) er—zcoset
) b €08 (€m d) = Cm sin (Em d)]am
m=1
e-——]k;;asmet(___l)m _ e]kgasmet
' (kg sin,)? — a2,
where
g, = sin" ! (z/r1), r1=+Va2+ 22
0; = sin‘l(w/rz), re = /22 + (2 + d)?

In Fig. 2, we depict the angular behavior of the far-zone transmitted
field, where (2.13; exact) and (2.14; approximate) are, respectively,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 5, MAY 1993

14 T v T ——
5
& 12+ koa = 107 i
& 4 =0
£ 10l
S~ 0
e § =0 —‘
g k k.
0 = K2

g 1 ]
K —— Exact
[
T 6k ——: Approximate g
g —- - Keller 8]
g 4 1
=
Q
<1
£ ol ]
S ]

0 . . . . . . : A

0 10 20 30 40 50 60 70 80 90

Transmitted Angle 8, (degrees)

Fig. 2. Angular behavior of far-zone transmitted field.

used for b, calculations. Fig. 2 shows that both exact and approximate
solutions agree well with the Keller’s high-frequency results [8] when
8: < 60°.

The transmission coefficient, ¢, may be defined as a ratio of the
time-averaged power transmitted through the slit to the time-averaged
power incident on the slit, and the reflection coefficient, r, as a ratio
of the scattered to the incident power. They are shown to be as

t= wlto Re{/ E;l(;[‘, —d)Hf*(:c, —d) dx}

2a ko —a

= Mo N g 2 . .

=T { ko pin T; Enlloml? cos &m d(sin &md)
+ b €5 Em df? = Buco] sin & d
~ lem|* sin &m d(cos m d)*]}
d o ‘ d d*

=51 E
20/]60 Re {[a U(J.70)Ht (w,O)d:c}

_ poa L1 -
I T V9mlmim .
= o I {n; Mb ché } (3.15)

where symbol Im{- - -} denotes taking an imaginary part of {-- -} and
symbol (---)* denotes a complex conjugate of (---)
i) When d = 0 and ko = ko, t and r simplify to

t=r=— 4@]‘10 {me')/m}

il) When koa > 1, and k¢ = k1 = ko, we obtain approximate ¢
and 7 in closed forms by substituting (2.14) into (3.15).

[ym [*
CL2k0 ;

1 <m < 2koa/m.

tr

where

(3.16)

It is interesting to note that the approximate ¢ and r are independent
of d. Using (3.15), we evaluate ¢t versus § for koa = 5 and
dfa =0,0.8,1.6 when ko = k1 = k3 in Table I. We observe that our
computations agree well with the results in [3] when d/a = 0,0.8,
but an appreciable difference exists between ours and {3] when
dfa = 1.6

The approximate ¢ (3.16) is tabulated against the exact ¢ (3.15) in
Table II when koo = 15 and d/a = 0,0.8,1.6. Table II shows that
approximate solution agrees well with the exact one except for near
grazing angles (8 > 70°).
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TABLE I
ANGULAR BEHAVIOR OF TRANSMISSION COEFFICIENT FOR kga = 5
koa =5
dfa=0 dfa =0.8 dfa=1.6
8 | Hongo[3] | (3.15) || Hongo[3] | (3.15) || Hongo[3] ] (3.15)
0° 1.0502 | 1.0410 1.0287 | 1.0280 1.0673 | 1.0547
10° | 0.9678 | 0.9694 0.9600 | 0.9593 0.9951 | 0.9707
20° 1 0.8945 | 0.8885 0.8774 | 0.8767 0.9059 | 0.8768
30° | 0.8991 | 0.8919 0.8654 | 0.8649 0.8806 | 0.8901
40° | 0.8398 | 0.8328 0.7895 { 0.7902 0.7810 | 0.8469
50° [ 0.6271 | 0.6228 0.5776 | 0.5795 0.5509 [ 0.6399
60° | 0.3589 | 0.3572 0.3248 | 0.3267 0.2981 [ 0.3677
7001 0.1502 | 0.1499 0.1340 | 0.1351 0.1188 | 0.1538
80° | 0.0350 | 0.0350 0.0309 | 0.0312 0.0267 | 0.0357
TABLE 11
ANGULAR BEHAVIOR OF TRANSMISSION COEFFICIENT FOR kga = 15
koa =15
Exact (3.15) Approxi-
0 [dfa=0]dJa=08]d/a =16 | mate(3.16)
0° | 0.9974 0.9992 1.0007 1.0022
10° || 0.9768 0.9769 0.9781 0.9822
20° || 0.9201 0.9158 0.9161 0.9249
30° || 0.8488 0.8399 0.8409 0.8475
40° || 0.7692 0.7667 0.7694 0.7693
50° | 0.6112 0.6014 0.6020 0.6139
60° || 0.5226 0.5055 0.5116 0.5021
70° | 0.2764 0.2263 0.2312 0.2187
80° || 0.0632 0.0434 0.0445 0.0415

IV. CONCLUSION

The behavior of TM-wave scattering from a slit in a thick con-
ducting screen is reexamined. A Fourier transform approach is
used to obtain the scattered and transmitted fields in series forms.
Approximate solutions for scattering and transmission is presented in
closed forms which are valid for high-frequency scattering.

n
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